

Vidyasagar University

Curriculum for B.Sc. Honours in Physics [Choice Based Credit System]

Semester-I

Sl.No.	Name of the Subject	Nature	Code	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
C1	C1T: Mathematical Physics-I	Core Course-1		4	0	0	6	75
	C1P: Mathematical Physics -I Lab	Core Course1 [Practical]		0	0	4		
C2	C2T: Mechanics	Core Course-2		4	0	0	6	75
	C2P:Mechanics Lab	Core Course-2 [Practical]		0	0	4		
GE-1	GE-1	GE					4/5	75
	GE-1	GE					2/1	
AECC	English	AECC					2	50
				Total Credits =20				

AECC- Ability Enhancement Compulsory Course: English /Modern Indian Language

Interdisciplinary/ Generic Elective (GE) from other Department

[Four papers are to be taken and each paper will be of 6 credits]:

[Papers are to be taken from any of the following discipline (**GE-1 from Mathematics**)]:
Mathematics/Chemistry/Computer Science/Statistics/Geology/Electronics/Bio-technology

Semester -1

Core Courses-1

CC-1: Mathematical Physics **Credits 06**

C1T1 – Mathematical Physics **Credits 04**

Mathematical Physics	
	4 Credits
Calculus	
Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only).	
First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular Integral.	
Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.	
Vector Calculus	
Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields.	
Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.	
Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).	
Orthogonal Curvilinear Coordinates	
Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian,	

Spherical and Cylindrical Coordinate Systems.

Introduction to probability

Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance.

Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.

DiracDeltafunctionanditsproperties

Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function.

Properties of Dirac delta function.

Reference Books

- ▶ Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7th Edn., Elsevier.
- ▶ An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning
- ▶ Differential Equations, George F. Simmons, 2007, McGraw Hill.
- ▶ Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- ▶ Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- ▶ Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning
- ▶ Mathematical Physics, Goswami, 1st edition, Cengage Learning
- ▶ Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press
- ▶ Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- ▶ Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press
- ▶ Mathematical methods in the Physical Sciences, M. L. Boas, 2005, Wiley.

C1P1 – Mathematical Physics Lab

Credits 02

Mathematical Physics

2 credits

Introduction and Overview

Computer architecture and organization, memory and Input/output devices

Basics of scientific computing

Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance of making equations in terms of dimensionless variables, Iterative methods

Errors and error Analysis

Truncation and round off errors, Absolute and relative errors, Floating point computations.

Introduction to plotting graphs with Gnuplot

Basic 2D and 3D graph plotting - plotting functions and datafiles, fitting data using gnuplot's fit function, polar and parametric plots, modifying the appearance of graphs, Surface and contour plots, exporting plots.

Introduction to programming in python:

Introduction to programming, constants, variables and data types, dynamical typing, operators and expressions, modules, I/O statements, iterables, compound statements, indentation in python, the if-elif-else block, for and while loops, nested compound statements, lists, tuples, dictionaries and strings, basic ideas of object oriented programming.

Programs

Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search

Random number generation

Area of circle, area of square, volume of sphere, value of pi (π)

Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods

Solution of linear and quadratic equation, solving $\alpha = \tan \alpha$, $\alpha = \frac{\sin \alpha}{\alpha}$, in optics

Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation

Evaluation of trigonometric functions e.g. $\sin \theta$, $\cos \theta$, $\tan \theta$, etc.

Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method

Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop

Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods

First order differential equation

- ▶ Radioactive decay
- ▶ Current in RC, LC circuits with DC source

- ▶ Newton's law of cooling
- ▶ Classical equations of motion

Attempt following problems using RK 4 order method

Solve the coupled differential equations

$$\frac{dx}{dt} = y + x - \frac{x^3}{3}; \frac{dy}{dx} = -x$$

For four initial conditions $x(0) = 0, y(0) = -1, -2, -3, -4$.

Plot x vs y for each of the four initial conditions on the same screen for $0 \leq t \leq 15$

The differential equation describing the motion of a pendulum is $\frac{d^2(\theta)}{dt^2} = -\sin(\theta)$. The pendulum is released from rest at an angular displacement α , i. e. $B(0) = \alpha$, and $B'(0) = 0$. Solve the equation for $\alpha = 0.1, 0.5$ and 1.0 and plot B as a function of time in the range $0 \leq t \leq 8$. Also plot the analytic solution valid for small B ($\sin(B) = B$)

Reference Books

- ▶ Introduction to Numerical Analysis, S.S. Sastry, 5th Edn. , 2012, PHI Learning Pvt. Ltd.
- ▶ Learning with Python-how to think like a computer scientist, J. Elkner, C. Meyer, and A. Downey, 2015, Dreamtech Press.
- ▶ Introduction to computation and programming using Python, J. Guttag, 2013, Prentice Hall India.
- ▶ Effective Computation in Physics- Field guide to research with Python, A. Scopatz and K.D. Huff, 2015, O'Reilly
- ▶ A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.
- ▶ Elementary Numerical Analysis, K.E. Atkinson, 3 rd Edn . , 2007, Wiley India Edition.
- ▶ Numerical Methods for Scientists & Engineers, R.W. Hamming, 1973, Courier Dover Pub.
- ▶ An Introduction to computational Physics, T.Pang, 2nd Edn., 2006,Cambridge Univ. Press
- ▶ Computational Physics, Darren Walker, 1st Edn., 2015, Scientific International Pvt. Ltd.

CC-2: Mechanics

Credits 06

C2T2: Mechanics	Credits 04
	4 Credits
Fundamentals of Dynamics	
Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Momentum of variable- mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse.	
Work and Energy	
Work and Kinetic Energy Theorem. Conservative and non- conservative forces. Potential Energy. Qualitative study of one dimensional motion from potential energy curves. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy.	
Collisions	
Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames.	
Rotational Dynamics	
Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation.	
Elasticity	
Relation between Elastic constants. Twisting torque on a Cylinder or Wire.	
Fluid Motion	
Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.	
Gravitation and Central Force Motion	
Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.	
Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and	

applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).

Oscillations

SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.

Non-Inertial Systems:

Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

Special Theory of Relativity

Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum.

Reference Books

- ▶ An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
- ▶ Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- ▶ Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- ▶ Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.
- ▶ Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- ▶ Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- ▶ University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Additional Books for Reference

- ▶ Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- ▶ University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- ▶ Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serway, 2010, Cengage Learning
- ▶ Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

C2 P2: Mechanics Lab

Credits 02

Mechanics	
	2 Credits
General Topic	
Discussion on random errors in observations.	
List of Practical	
<ol style="list-style-type: none">1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.2. To study the random error in observations.3. To determine the height of a building using a Sextant.4. To study the Motion of Spring and calculate, (a) Spring constant, (b) g and (c) Modulus of rigidity.5. To determine the Moment of Inertia of a Flywheel.6. To determine g and velocity for a freely falling body using Digital Timing Technique7. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).8. To determine the Young's Modulus of a Wire by Optical Lever Method.9. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.10. To determine the elastic Constants of a wire by Searle's method.11. To determine the value of g using Bar Pendulum.12. To determine the value of g using Kater's Pendulum.	
<p>Note: Some of these experiments may be too expensive to set up in all colleges. In particular, the digital timing technique is usually too costly, unless use is made of comparatively cheap solutions like the expeyes system developed by IUAC. It may be more feasible to leave the universities some freedom in choosing experiments that are similar in spirit, but more in keeping with equipment that may be already available in the labs.</p>	
Reference Books	
<ul style="list-style-type: none">▶ Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House▶ Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers▶ A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal▶ Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.▶ Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.	

Generic Elective

GE-1 [Interdisciplinary for other department]

GE- T: Elements of Modern Physics

Credits 06

GE-1T1: Elements of Modern Physics

Credits 04

Elements of Modern Physics	
	4 Credits
Planck's quantum	
Planck's constant and light as a collection of photons; Photo- electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment.	
Problems with Rutherford model	
Instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.	
Position measurement	
Gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle-impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.	
Two slit interference experiment	
Two slit interference experiment with photons, atoms & particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension.	
One Dimensional infinitely Rigid Box	
Energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.	
Size and structure of atomic nucleus and its relation with atomic weight	
Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of	

nuclear force, NZ graph, semi-empirical mass formula and binding energy.

Radioactivity

Stability of nucleus; Law of radioactive decay; Mean life and half-life; decay; decay - energy released, spectrum and Pauli's prediction of neutrino; -ray emission.

Fission and fusion

Mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions.

Reference Books

- ▶ Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill
- ▶ Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2009, PHI Learning
- ▶ Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill
- ▶ Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 2008, Tata McGraw- Hill Co.
- ▶ Modern Physics, R.A. Serway, C.J. Moses, and C.A. Moyer, 2005, Cengage Learning
- ▶ Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill

GE-1P1:Elements of Modern Physics Lab

Credits 02

Elements of Modern Physics	
	2 Credits
List of Practical	
<ol style="list-style-type: none">1. To determine value of Boltzmann constant using V-I characteristic of PN diode.2. To determine work function of material of filament of directly heated vacuum diode.3. To determine the ionization potential of mercury.4. To determine value of Planck's constant using LEDs of at least 4 different colours.5. To determine the wavelength of H-alpha emission line of Hydrogen atom.6. To determine the absorption lines in the rotational spectrum of Iodine vapour.7. To study the diffraction patterns of single and double slits using laser and measure its intensity variation using Photosensor & compare with incoherent source – Na.8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light9. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.10. To setup the Millikan oil drop apparatus and determine the charge of an electron.	
Reference Books	
<ul style="list-style-type: none">► Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.► Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers► A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.	

Vidyasagar University

Semester-II

Sl.No.	Name of the Subject	Nature	Code	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
C3	C3T: Electricity and Magnetism	Core Course-3		4	0	0	6	75
	C3P: Electricity and Magnetism Lab	Core Course3 [Practical]		0	0	4		
C4	C4T: Waves and Optics	Core Course-4		4	0	0	6	75
	C4P: Wave and Optics Lab	Core Course-4 [Practical]		0	0	4		
GE-2	GE-2	GE					4/5	75
	GE-2	GE					2/1	
AECC -2	Environmental Studies	AECC					4	100
				Total Credits =22				

L=Lecture, T=Tutorial, P=Practical

AECC- Ability Enhancement Compulsory Course: Environmental Studies.

Interdisciplinary/ Generic Elective (GE) from other Department

[Four papers are to be taken and each paper will be of 6 credits]:

[Papers are to be taken from any of the following discipline (**GE-2 from Mathematics**)]:

Mathematics/Chemistry/Computer Science/Statistics/Geology/Electronics/Bio-

technology

Semester -II
Core Courses

Core-3

CC-3: Electricity and Magnetism	Credits 06
C3 T - Electricity and Magnetism	Credits 04
Electricity and Magnetism	4 Credits

Electric Field and Electric Potential

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry.

Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Uniqueness theorem (statement). Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere.

Dielectric Properties of Matter

Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics.

Magnetic Field

Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole).

Ampere's Circuital Law and its application to (1) infinite straight wire, (2) Infinite planar surface current, and (3) Solenoid. Properties of B: curl and divergence. Axial vector property of B and its consequences. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field.

Magnetic Properties of Matter

Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis.

Electromagnetic Induction

Faraday's Law. Lenz's Law. Self-Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current

Electrical Circuits

AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band

Width. Parallel LCR Circuit

Network theorems

Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits

Note: For the sake of brevity, details of ballistic galvanometer may be omitted from the theory course. Some part of the theory may be needed for the experiments, but this can be covered as part of Practical.

Reference Books

- Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
- Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press.

C3P – Electricity and Magnetism (Lab) **Electricity and Magnetism**

Credits 02

General topic

Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.

List of Practicals

1. To study the characteristics of a series RC Circuit.
2. To determine an unknown Low Resistance using Potentiometer.
3. To determine an unknown Low Resistance using Carey Foster's Bridge.
4. To determine the resistance of a galvanometer using Thomson's method.
5. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
6. To verify the Thevenin and Norton theorems.
7. To verify the Superposition, and Maximum power transfer theorems.
8. To determine self-inductance of a coil by Anderson's bridge.
9. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
10. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- Engineering Practical Physics, S.Panigrahi and B.Mallick, 2015, Cengage Learning.
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

Core Course-4

CC-4 Waves and Optics

Credits 06

C4 T - Waves and Optics **Waves and Optics**

Credits 04

Superposition of Collinear Harmonic oscillations

Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats).

Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences.

Superposition of two perpendicular Harmonic Oscillations

Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses.

Wave Motion

Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves

Velocity of Waves

Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction.

Superposition of Two Harmonic Waves

Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves.

Wave Optics

Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence.

Interference

Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index.

Interferometer

Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer.

Diffraction and Holography

Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula. (Qualitative discussion only)

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

Holography: Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms.

Reference Books

- Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.

- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand Publications.

**C4 P – Wave and Optics Lab
Wave and Optics**

Credits 02

2 Credits

List of Practical

1. To determine the frequency of an electric tuning fork by Melde's experiment and verify $\lambda^2 - T$ law.
2. To investigate the motion of coupled oscillators.
3. To study Lissajous Figures.
4. Familiarization with: Schuster's focusing; determination of angle of prism.
5. To determine refractive index of the Material of a prism using sodium source.
6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
7. To determine the wavelength of sodium source using Michelson's interferometer.
8. To determine wavelength of sodium light using Fresnel Biprism.
9. To determine wavelength of sodium light using Newton's Rings.
10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
12. To determine dispersive power and resolving power of a plane diffraction grating.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

**Generic Elective
GE-2 [Interdisciplinary for other department]**

GE2 T - Thermal Physics and Statistical Mechanics

Thermal Physics and Statistical Mechanics

4 Credits

Laws of Thermodynamics

Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient,

Reversible and irreversible processes, Second law and Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero.

Thermodynamical Potentials

Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations.

Kinetic Theory of Gases

Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases.

Theory of Radiation

Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.

Statistical Mechanics

Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics.

Reference Books

- Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
- Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
- Heat and Thermodynamics, M.W.Zemasky and R. Dittman, 1981, McGraw Hill
- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears and
- G.L. Salinger. 1988, Narosa
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. chand Publications.

GE2 P – Thermal Physics and Statistical (Lab)
Thermal Physics and Statistical

2 Credits

List of Practical

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
2. Measurement of Planck's constant using black body radiation.
3. To determine Stefan's Constant.
4. To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.
5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system
10. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge

Reference Books

- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal, 1985, Vani Publication.

Vidyasagar University

Curriculum for B.Sc (Honours) in Physics [Choice Based Credit System]

Semester-III

Course	Course Code	Name of the Subjects	Course Type/ Nature	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
CC-5		C5T: Mathematical Physics-II	Core Course - 5	4	0	0	6	75
		C5P: Mathematical Physics II Lab		0	0	4		
CC-6		C6T: Thermal Physics	Core Course - 6	4	0	0	6	75
		C6P: Thermal Physics Lab		0	0	4		
CC-7		C7T: Digital Systems and Applications	Core Course - 7	4	0	0	6	75
		C7P: Digital Systems and Applications Lab		0	0	4		
GE-3		TBD	Generic Elective -3				4/5	75
							2/1	
SEC-1		SEC-1: Physics Workshop Skill Or SEC-1: Electrical Circuits and Network Skills	Skill Enhancement Course-1	1	1	0	2	50
Semester Total							26	350

L=Lecture, **T**= Tutorial, **P**=Practical, **CC** = Core Course, **GE**= Generic Elective, **SEC** = Skill Enhancement Course, **TBD** = to be decided

Generic Elective (GE) (Interdisciplinary) from other Department [**Four papers are to be taken and each paper will be of 6 credits**]:

Papers are to be taken from any of the following discipline:

Mathematics/Chemistry/Computer Science/Statistics/Geology/Electronics/Bio-technology

Modalities of selection of Generic Electives (GE): A student shall have to choose **04** Generic Elective (GE1 to GE4) strictly from **02** subjects / disciplines of choice taking exactly **02** courses from each subjects of disciplines. Such a student shall have to study the curriculum of Generic Elective (GE) of a subject or discipline specified for the relevant semester.

Semester-III
Core Course (CC)

CC-5 : Mathematical Physics-II **Credits 06**

C5T: Mathematical Physics-II **Credits 04**

Mathematical Physics – II

Fourier Series

Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

Frobenius Method and Special Functions

Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions ($J_0(x)$ and $J_1(x)$) and Orthogonality.

Some Special Integrals

Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).

Variational calculus in physics

Functionals. Basic ideas of functionals. Extremization of action as a basic principle in mechanics. Lagrangian formulation. Euler's equations of motion for simple systems: harmonic oscillators, simple pendulum, spherical pendulum, coupled oscillators. Cyclic coordinates. Symmetries and conservation laws. Legendre transformations and the Hamiltonian formulation of mechanics. Canonical equations of motion. Applications to simple systems.

Partial Differential Equations

Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation.

Reference Books

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.

- Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press
- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
- Mathematical Physics, P. K. Chattopadhyay, 2014, New Academic Science.

C5P: Mathematical Physics II Lab

Credits 02

Mathematical Physics II

Introduction to Numerical computation using numpy and scipy

Introduction to the python numpy module. Arrays in numpy, array operations, array item selection, slicing, shaping arrays. Basic linear algebra using the linalg submodule. Introduction to online graph plotting using matplotlib. Introduction to the scipy module. Uses in optimization and solution of differential equations.

Introduction to OCTAVE (if time permits)

Curve fitting, Least square fit, Goodness of fit, standard deviation

Ohms law to calculate R, Hooke's law to calculate spring constant

Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values problems

Solution of mesh equations of electric circuits (3 meshes)

Solution of coupled spring mass systems (3 masses)

Generation of Special functions using User defined functions

Generating and plotting Legendre Polynomials Generating and plotting Bessel function

Solution of ODE First order Differential equation Euler, modified Euler and Runge-Kutta second order methods Second order differential equation Fixed difference method

First order differential equation

1. Radioactive decay
2. Current in RC, LC circuits with DC source
3. Newton's law of cooling
4. Classical equations of motion Second order Differential Equation
5. Harmonic oscillator (no friction)
6. Damped Harmonic oscillator
7. Over damped
8. Critical damped
9. Oscillatory
10. Forced Harmonic oscillator
11. Transient and
12. Steady state solution

13. Apply above to LCR circuits also

14. Solve $x^2 \frac{d^2y}{dx^2} - 4x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$ with the boundary condition at $x=1$, $y=\frac{1}{2}e^2$, $\frac{dy}{dx} = \frac{-3}{2}e^2 - 0.5$, in the range $1 \leq x \leq 3$. Plot y and $\frac{dy}{dx}$ against x in the given range in the same graph.

Partial differential equations

1. Wave equation
2. Heat equation
3. Poisson equation
4. Laplace equation

Reference Books

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- Numpy beginners guide, Idris Alba, 2015, Packt Publishing
- Computational Physics, D.Walker, 1st Edn., 2015, Scientific International Pvt. Ltd.
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer

CC- 6: Thermal Physics

Credits 06

C6T: Thermal Physics

Credits 04

Thermal Physics

Introduction to Thermodynamics

Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Co-efficient.

Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of

Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero.

Thermodynamic Potentials

Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations

Maxwell's Thermodynamic Relations

Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of $C_p - C_v$, (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process.

Kinetic Theory of Gases

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases.

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance.

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO_2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling.

Reference Books

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press
- Thermodynamics and an introduction to thermostatistics, H. B. Callen, 1985, Wiley.
- Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.

C6P: Thermal Physics Lab**Credits 02****Thermal Physics****List of Practical**

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.
7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature

Reference Books

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D. P. Khandelwal, 1985, Vani Pub.

CC-7: Digital Systems and Applications**Credits 06****C7T: Digital Systems and Applications****Credits 04****Digital Systems and Applications****Integrated Circuits**

Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs.

Digital Circuits

Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers.

Boolean algebra

De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.

Data processing circuits

Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

Circuits

Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor.

Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop.

Timers

IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator.

Shift registers

Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits).

Counters (4 bits)

Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter.

Computer Organization

Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map.

Reference Books

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw
- Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Digital Electronics G K Kharate ,2010, Oxford University Press
- Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning
- Logic circuit design, Shimon P. Vingron, 2012, Springer.
- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill
- Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.

C7P: Digital Systems and Applications Lab**Credits 02****Digital Systems and Applications****List of Practical**

1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
2. To test a Diode and Transistor using a Multimeter.
3. To design a switch (NOT gate) using a transistor.
4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
5. To design a combinational logic system for a specified Truth Table.
6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
7. To minimize a given logic circuit.
8. Half Adder, Full Adder and 4-bit binary Adder.
9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
11. To build JK Master-slave flip-flop using Flip-Flop ICs
12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
14. To design an astable multivibrator of given specifications using 555 Timer.
15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books

- Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.

Generic Elective Syllabus**GE-3 [Interdisciplinary for other department]****GE -3: Solid State Physics****Credits 06****GE3T: Solid State Physics****Credits 04****Solid State Physics****Crystal Structure**

Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.

Elementary Lattice Dynamics

Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law

Magnetic Properties of Matter

Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.

Dielectric Properties of Materials

Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons.

Elementary band theory

Kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators. P and N type Semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient.

Superconductivity

Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect.

Reference Books

- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- Solid State Physics, Rita John, 2014, McGraw Hill
- Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications

GE3 P: Solid State Physics Lab

Credits 02

Solid State Physics

List of Practical

- Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- To measure the Magnetic susceptibility of Solids.
- To determine the Coupling Coefficient of a piezoelectric crystal.
- To measure the Dielectric Constant of a dielectric Materials with frequency
- To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- To determine the refractive index of a dielectric layer using SPR
- To study the PE Hysteresis loop of a Ferroelectric Crystal.
- To study the BH curve of iron using a Solenoid and determine the energy loss.

- To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- To determine the Hall coefficient of a semiconductor sample.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn., 2011, Kitab Mahal
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India

Skill Enhancement Course (SEC)

SEC-1: Physics Workshop Skill **SEC1T – Physics Workshop Skill**

Credits 02

Physics Workshop Skill

Introduction

Measuring units: conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc.

Mechanical Skill

Concept of workshop practice. Overview of manufacturing methods: casting, foundry, machining, forming and welding. Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Cutting of a metal sheet using blade. Smoothening of cutting edge of sheet using file. Drilling of holes of different diameter in metal sheet and wooden block. Use of bench vice and tools for fitting. Make funnel using metal sheet.

Electrical and Electronic Skill

Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, Electronic switch using transistor and relay.

Introduction to prime movers

Mechanism, gear system, wheel, Fixing of gears with motor axel. Lever mechanism, Lifting of heavy weight using lever. Braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment.

Reference Books

- A text book in Electrical Technology - B L Theraja – S. Chand and Company.
- Performance and design of AC machines – M.G. Say, ELBS Edn.
- Mechanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd.
- Workshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn., Editor Newnes [ISBN: 0750660732]
- New Engineering Technology, Lawrence Smyth/Liam Hennessy, The Educational Company of Ireland [ISBN: 0861674480]

OR

SEC-1: Electrical Circuits and Network Skills

Credits 02

SEC1T: Electrical Circuits and Network Skills

Electrical Circuits and Network Skills

Basic Electricity Principles

Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter.

Understanding Electrical Circuits

Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money.

Electrical Drawing and Symbols

Drawing symbols. Blueprints. Reading Schematics. Ladder diagrams. Electrical Schematics. Power circuits. Control circuits. Reading of circuit schematics. Tracking the connections of elements and identify current flow and voltage drop.

Generators and Transformers

DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers.

Electric Motors

Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor

Solid-State Devices

Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources

Electrical Protection

Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device)

Electrical Wiring

Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder. Preparation of extension board.

Reference Books

- A text book in Electrical Technology - B L Theraja - S Chand & Co.
- A text book of Electrical Technology - A K Theraja
- Performance and design of AC machines - M G Say ELBS Edn.